UNITED STATES SECURITIES AND EXCHANGE COMMISSION

WASHINGTON, D.C. 20549

\mathbf{T}	-	- 0	
111	RN	/	, 1/
		V .	- n

CURRENT REPORT Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934

Date of Report (Date of earliest event reported): December 5, 2020

Kura Oncology, Inc. (Exact name of registrant as specified in its charter)

Delaware (State or other jurisdiction of incorporation)

001-37620 (Commission File Number)

61-1547851 (IRS Employer Identification No.)

12730 High Bluff Drive, Suite 400 San Diego, CA (Address of principal executive offices)

92130 (Zip Code)

Registrant's telephone number, including area code: (858) 500-8800

N/A (Former name or former address, if changed since last report.)

	ck the appropriate box below if the Form 8-K filing is in wing provisions (see General Instruction A.2. below):	ntended to simultaneously satisfy the f	iling obligation of the registrant under any of the
	Written communications pursuant to Rule 425 under t	the Securities Act (17 CFR 230.425)	
	Soliciting material pursuant to Rule 14a-12 under the	Exchange Act (17 CFR 240.14a-12)	
	Pre-commencement communications pursuant to Rule	e 14d-2(b) under the Exchange Act (17	CFR 240.14d-2(b))
	Pre-commencement communications pursuant to Rule	e 13e-4(c) under the Exchange Act (17	CFR 240.13e-4(c))
	Securities reg	gistered pursuant to Section 12(b) of	the Act:
	Title of each class	Trading Symbol(s)	Name of each exchange on which registered
C	ommon Stock, par value \$0.0001 per share	KURA	The Nasdaq Global Select Market
	cate by check mark whether the registrant is an emergin ter) or Rule 12b-2 of the Securities Exchange Act of 19	1 1	405 of the Securities Act of 1933 (§ 230.405 of this
		* /	
		Emerg	ging growth company

Item 8.01 Other Events.

On December 5, 2020, Kura Oncology, Inc. (the "Company") announced preliminary results from its KOMET-001 Phase 1/2A clinical trial that were presented at an oral presentation at the 2020 Annual Meeting of the American Society of Hematology ("ASH"). As of the data cutoff date for the ASH presentation, November 2, 2020, the trial had enrolled 12 patients with relapsed or refractory acute myeloid leukemia ("AML"), of whom ten were evaluable for safety and tolerability and eight were evaluable for efficacy. Clinical or biological activity was reported in six of the eight efficacy-evaluable patients, including two patients achieving a complete remission, one patient achieving a morphological leukemia-free state, and one patient experiencing a marked decrease in hydroxyurea requirements and having attained peripheral blood count stabilization. As presented at ASH, KO-539 has been well tolerated with a manageable safety profile to date. As of the data cutoff date, no drug discontinuations due to treatment-related adverse events and no evidence of QTc prolongation or other clinically significant EKG changes were reported. Treatment related adverse effects (grade ³ 3) were reported to included pancreatitis, increased lipase, decreased neutrophil count, tumor lysis syndrome and deep venous thrombosis.

On December 5, 2020, representatives of the Company began providing presentation materials (the "Presentation") to certain interested parties. A copy of the Presentation is attached hereto as Exhibit 99.1 and incorporated herein by reference.

Item 9.01 Financial Statements and Exhibits.

(d) Exhibits.

Exhibit No. Description

99.1 <u>Presentation Materials of Kura Oncology, Inc.</u>

104 Cover Page Interactive Data File (embedded within the Inline XBRL document)

SIGNATURES

Pursuant to the requirements of the Securities Exchange Act of 1934, the registrant has duly caused this report to be signed on its behalf by the undersigned hereunto duly authorized.

Date: December 7, 2020 Kura Oncology, Inc.

By: /s/ James Basta
James Basta

James Basta Chief Legal Officer and Secretary

DEVELOPING PRECISION MEDICINES FOR THE TREATMENT OF CANCER

Corporate Presentation – December 2020

Forward-Looking Statements

This presentation contains forward-looking statements. Such statements include, but are not limited to, statements regarding our research, preclinical and clinical development activities, plans and projected timelines for tipifarnib and KO-539, plans regarding regulatory filings, our expectations regarding the relative benefits of our product candidates versus competitive therapies, and our expectations regarding the therapeutic and commercial potential of our product candidates. The words "believe," "may," "will," "estimate," "promise," "plan", "continue," "anticipate," "intend," "expect," "potential" and similar expressions (including the negative thereof), are intended to identify forward-looking statements. Because such statements are subject to risks and uncertainties, actual results may differ materially from those expressed or implied by such forward-looking statements. Risks that contribute to the uncertain nature of the forward-looking statements include: our preclinical studies and clinical trials may not be successful; the U.S. Food and Drug Administration (FDA) may not agree with our interpretation of the data from clinical trials of our product candidates; we may decide, or the FDA may require us, to conduct additional clinical trials or to modify our ongoing clinical trials; we may experience delays in the commencement, enrollment, completion or analysis of clinical testing for our product candidates, or significant issues regarding the adequacy of our clinical trial designs or the execution of our clinical trials may arise, which could result in increased costs and delays, or limit our ability to obtain regulatory approval; the commencement, enrollment and completion of clinical trials and the reporting of data therefrom; the COVID-19 pandemic may disrupt our business and that of the third parties on which we depend, including delaying or otherwise disrupting our clinical trials and preclinical studies, manufacturing and supply chain, or impairing employee productivity; our product candidates may not receive regulatory approval or be successfully commercialized; unexpected adverse side effects or inadequate therapeutic efficacy of our product candidates could delay or prevent regulatory approval or commercialization; and we may not be able to obtain additional financing. Additional risks and uncertainties may emerge from time to time, and it is not possible for Kura's management to predict all risk factors and uncertainties.

All forward-looking statements contained in this presentation speak only as of the date on which they were made. Other risks and uncertainties affecting us are described more fully in our filings with the Securities and Exchange Commission. We undertake no obligation to update such statements to reflect events that occur or circumstances that exist after the date on which they were made.

Investment Highlights

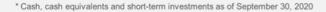
Targeted Oncology

Advancing two wholly owned, targeted oncology drug candidates using a precision medicine approach; fast-to-market strategy

Tipifarnib: Farnesyl transferase inhibitor

- Registration-directed trial in HRAS mutant head and neck squamous cell carcinoma (HNSCC) ongoing
- Opportunity to expand to HRAS and PI3Kα dependent tumors

Proprietary Pipeline


 Multiple clinical proof-of-concept studies support significant lifecycle expansion opportunities

KO-539: Menin inhibitor

- Potent and selective inhibitor of the menin-KMT2A(MLL) proteinprotein interaction
- Potential to target ~35% of acute myeloid leukemia (AML)
- Preliminary Phase 1 data show encouraging safety, tolerability and clinical activity in multiple genetically defined subgroups of AML

Strong Financials

\$325.4 million in cash* provides runway into 2023

Kura Leadership Team and Board of Directors

Proven oncology drug development and commercialization expertise

Leadership Team

Troy Wilson, Ph.D., J.D. President & Chief Executive Officer

James Basta, J.D. Chief Legal Officer

Stephen Dale, M.D. Chief Medical Officer

Kirsten Flowers
Chief Commercial Officer

Kathleen Ford Chief Operating Officer

Marc Grasso, M.D. Chief Financial Officer & Chief Business Officer

Board of Directors

Faheem Hasnain
Executive Chairman, Gossamer Bio

Robert Hoffman
Former Chief Financial Officer, Heron Therapeutics

Thomas Malley
President, Mossrock Capital

Diane ParksFormer Head of U.S. Commercial, Kite Pharma

Steven Stein, M.D. Chief Medical Officer, Incyte

Mary Szela
President and CEO, TriSalus Life Sciences

Troy Wilson, Ph.D., J.D.
President and CEO, Kura Oncology

Advancing Targeted Oncology Drug Candidates **Using a Precision Medicine Approach**

Tipifarnib

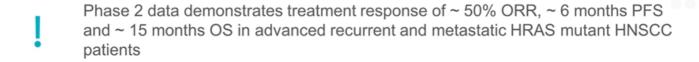
Targeting HRAS Mutant Solid Tumors

- Fast Track Designation
- Initial opportunity to address high unmet need in relapsed/refractory HRAS mutant HNSCC
- Opportunities to expand to broader patient populations and to additional indications

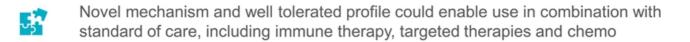
KO-539

Targeting KMT2A(MLL)-r and **NPM1-Mutant AML**

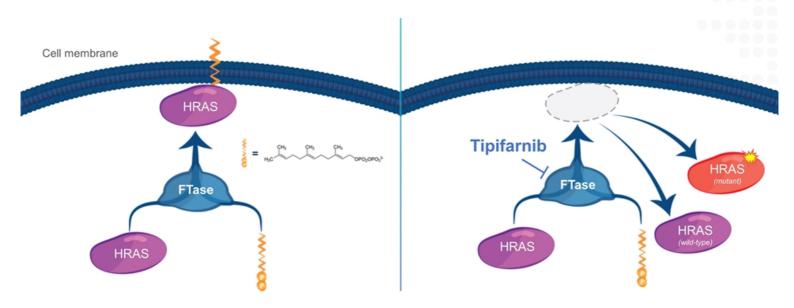
- Orphan Drug Designation
- Opportunity to address large patient population with high unmet need in relapsed/refractory AML
- Publications support potential to drive robust and persistent responses in KMT2A(MLL)-r and NPM1-mutant AML



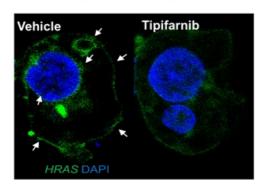
Tipifarnib in HRAS Mutant Solid Tumors



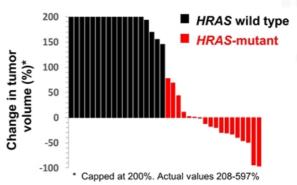
Unique MOA targets farnesylation, an essential modification required for activity of the HRAS mutant oncoprotein



Tipifarnib Inhibits Farnesylation – An Essential Modification Required for HRAS Activity



- · Tipifarnib inhibits farnesylation and signaling activity of the HRAS oncoprotein
- · Farnesylation is essential for HRAS signal transduction activity
- · HRAS mutations drive proliferation and resistance mechanisms in solid tumors
- Incidence of HRAS mutations in HNSCC is approximately 4-8% and varies by region



Tipifarnib Displays Robust, Selective Activity in HRAS Mutant HNSCC Models

HRAS membrane displacement

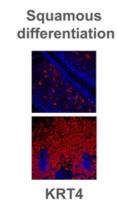
Antitumor activity in PDX models

Vehicle

Tipifarnib

pERK

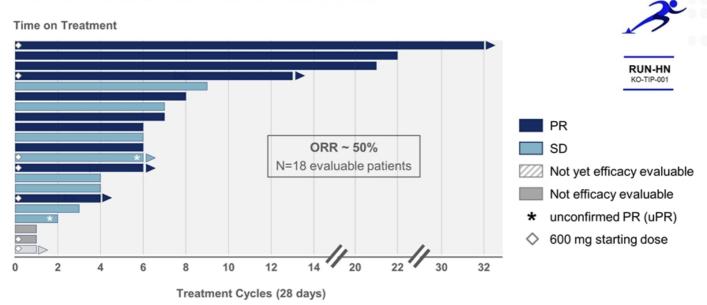
MAPK


signaling

c.CSP3

Apoptosis

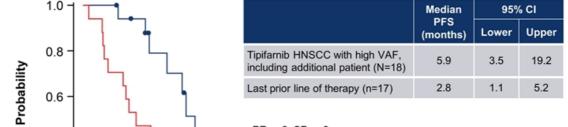
Cell cycle arrest


Angiogenesis
CD31

Source: Kura internal data

Durable Anti-Tumor Activity with Tipifarnib as a Monotherapy in Patients with HRAS Mutant HNSCC

RUN-HN: Phase 2 Trial in HRAS Mutant HNSCC

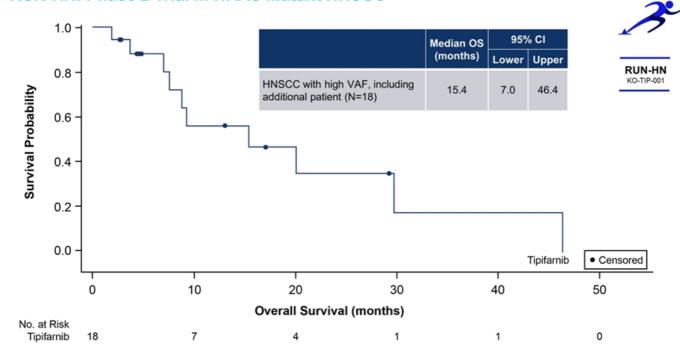


Ho et al. AACR-NCI-EORTC 2019 #384 (preliminary data as of 10/17/19) Efficacy-evaluable patients with HRAS mutant variant allele frequency (VAF) \geq 20% and serum albumin \geq 3.5 g/dL, or HRAS VAF \geq 35% One patient treated off-protocol through compassionate use

Progression-Free Survival with Tipifarnib and Last Prior Therapy in Patients with HRAS Mutant HNSCC

RUN-HN: Phase 2 Trial in HRAS Mutant HNSCC

RUN-HN KO-TIP-001


<u>a</u>	0.6	<u> </u>	Last prior line or the	erapy (II-I7)	2.0	1.1 5.4	2
al Pro	0.4 -	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	PR n=9; SD n=9				
	0.2 -		PR n=1; SD n=6	7			• Tipifarnib
	0.0		Last F	rior Therapy			Censored
	\neg			1			
	(5	10	15	20		25
		Prog	gression-free S	urvival (mon	ths)		
No. at F	Risk						
Tipifa	rnib 1	8 8	4	3	1		1
Last Prior Ther			2	0			

Ho et al. ASCO 2020 #6504 (preliminary data as of 9/30/19) Efficacy-evaluable patients with HRAS mutant variant allele frequency (VAF) \geq 20% and serum albumin \geq 3.5 g/dL, or HRAS VAF \geq 35% One patient treated off-protocol through compassionate use

Overall Survival in Patients with HRAS Mutant HNSCC

RUN-HN: Phase 2 Trial in HRAS Mutant HNSCC

Ho et al. ASCO 2020 #6504 (preliminary exploratory data as of 9/30/19) Efficacy-evaluable patients with HRAS mutant variant allele frequency (VAF) \geq 20% and serum albumin \geq 3.5 g/dL, or HRAS VAF \geq 35% One patient treated off-protocol through compassionate use

Registration Strategy in HRAS Mutant HNSCC

AIM-HN: Registration-directed trial of tipifarnib in HRAS mutant HNSCC

- · Recurrent or metastatic patients after one prior line of platinum therapy
- Now open in ~90 clinical sites in the U.S., Europe and Asia
- Amended trial to enroll all HRAS mutant HNSCC patients regardless of variant allele frequency
- Intended to support an NDA seeking accelerated approval*

SEQ-HN: Prospective observational cohort of HNSCC

- Matched case-control study designed to:
 - Characterize natural history of HRAS mutant HNSCC patients and their outcomes after first line therapy
 - Enable identification of patients for potential enrollment into AIM-HN
- May support potential FDA labelling discussions, post-approval commitments and commercial considerations


Tipifarnib Has the Potential to be the First Small **Molecule Targeted Therapy for HNSCC Patients**

Globally, ~885,000 people develop head and neck cancer annually and ~450,000 die of HNSCC each year1 60,000+ cases of HNSCC per year in the U.S.2

Head and neck squamous cell carcinoma ranks as the 7th leading cancer worldwide³

Only ~1/3 of patients with advanced diagnosis survive 5 years⁴

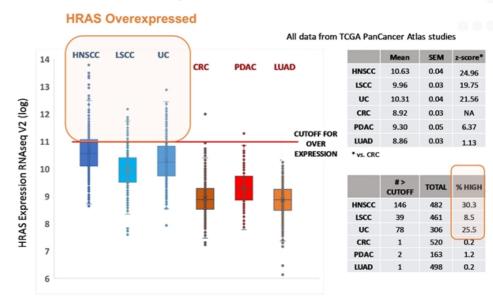
Outcomes with currently available therapies (including I-O therapy) are poor⁵

OS

First line: 10-15 mo First line: 3-5 mo Second line: 2-3 mo Second line: 5-8 mo

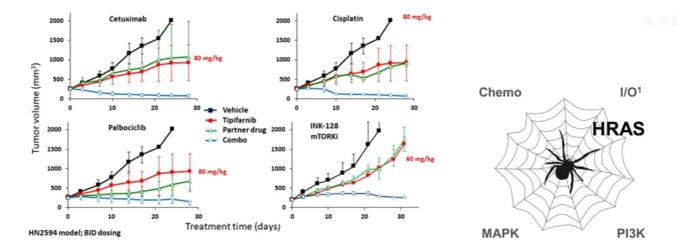
PFS

First line: 20-36% Second line: 13-16%


Bray et al. CA Cancer J Clin. 2018;68(6):394-424
Cramer et al. Nat Rev Clin Oncol. 2019 Nov;16(11):669-683 | ACS Cancer Facts and Figures 2020
Siegel et al. CA Cancer J Clin. 2020;70(1):7-30
Alational Cancer Institute. Introduction to head & neck cancer. https://training.seer.cancer.gov/head-neck/intro/. Accessed March 4, 2019
N Engl J Med. 2008 Sep 11;359(11):1116-27 | Keytruda & Opdivo package inserts | J Clin Oncol. 2007 Jun 1;25(16):2171-7 | J Clin Oncol. 2012 30:15_suppl, 5574-5574

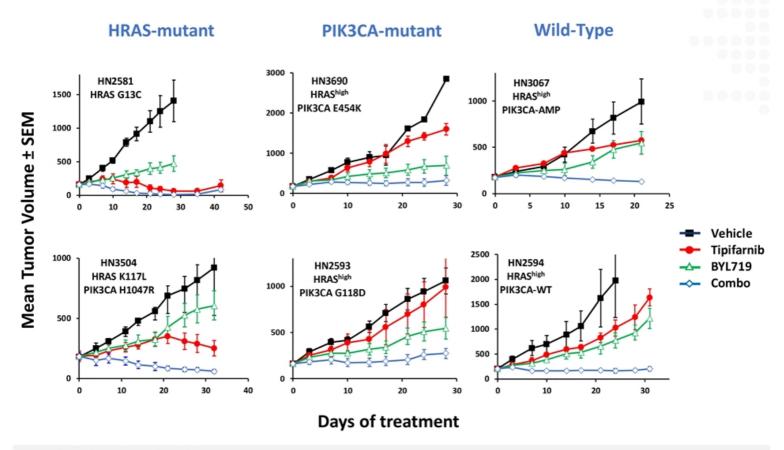
HRAS Dependent Tumors Represent a Significant Subset of HNSCC with Distinct Biology

- Several independent studies cluster HRAS mutant HNSCCs as part of a larger subset¹
- TCGA cohort shows overexpression of HRAS gene in 25-30% of HNSCC²
- Average HRAS expression in HNSCC is 5-10x higher than in other tumor types
- Together with HRAS mutant tumors, HRAS-overexpressing HNSCC may represent a significant subset of HRAS dependent tumors with distinct biology that is targeted by tipifarnib


¹ Campbell et al. (2018), Cell Rep. 23:194; Su et al. (2017), Theranostics, 7:1088;

HRAS is a Central Resistance Mechanism to Other Therapies in PDX Models of HRAS Dependent HNSCC

 Tipifarnib displays additive or synergistic anti-tumor activity with a range of other drugs in HRAS-overexpressing patient-derived xenograft (PDX) models



 HRAS represents a key node at the center of HNSCC tumor biology, driving resistance to other therapies and reinforcing the potential for combination strategies with tipifarnib

¹ HRAS likely drives immunosuppression in HNSCC, and tipifarnib may also sensitize to immunotherapy via inhibition of CXCL12 production by activated carcinoma-associated fibroblasts

Combinations of Tipifarnib and PI3Kα Inhibitor Demonstrate Robust Activity in HNSCC PDX Models

Malik et al. EORTC-NCI-AACR 2020 #159

Tipifarnib used at reduced dose to simulate potential lower doses in combination (80→60mg/kg BID) BYL-719 used at reduced dose to simulate potential lower doses in combination (60→40mg/kg QD)


Combinations of Tipifarnib and Pl3Kα inhibitors Have Broad Therapeutic Potential in HNSCC

- HRAS-MAPK and PI3K-mTOR are complementary pathways in HNSCC
 - Overexpression of WT HRAS reported to induce resistance to PI3Kα inhibition
 - HRAS is reported to preferentially activate PI3K (vs. KRAS; vs. MAPK)
- HRAS mutation/over expression and PIK3CA mutations/amplifications account for 25-50% of HNSCC¹
 - PIK3CA mutations/amplification: 30-40% (25% estimated overlap with HRAS overexpressing tumors)
 - HRAS overexpression: 20-30%
 - HRAS mutations: 4-8% (83% overexpress HRAS)
- Preclinical data is supportive of the combination; enhanced activity observed in both HRAS mutant/overexpressed and PIK3CA mutant/amplified populations of HNSCC

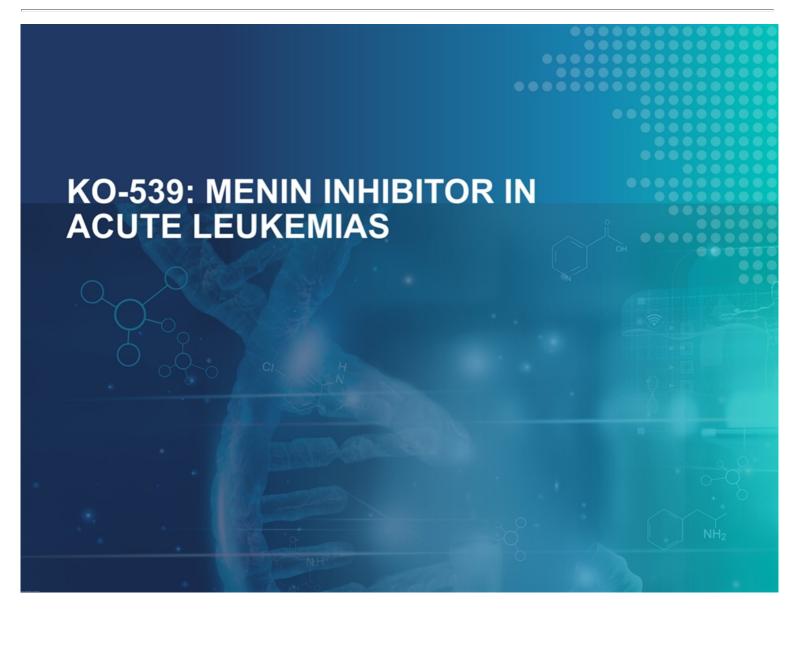
¹TCGA Data

₹ URA

Tipifarnib / FTI Patent Exclusivity

- Multiple issued U.S. patents covering biomarker-guided indications provide patent exclusivity to 2036
- Additional patent applications pending in the U.S. and foreign countries for tipifarnib in other biomarkers and disease indications
- · U.S. patents cover use of "any farnesyl transferase inhibitor"

Combinations


- Patents cover combinations of tipifarnib with other agents (e.g., I/O)
- Additional patents possible with specific agents, doses, schedules, etc.

Novel FTI Program

- · Researching FTIs with superior properties to tipifarnib
- · Expect composition of matter IP on new discoveries

•••••

KO-539: Menin Inhibitor

Potent, selective, reversible, oral inhibitor of menin-KMT2A(MLL) protein-protein interaction for treatment of AML

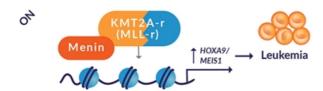
Novel MOA targeting epigenetic dysregulation leading to differentiation block and anti-tumor activity in 35% or more of AML

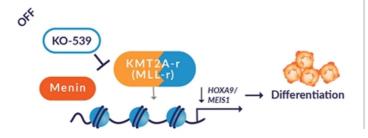
Preliminary data from KOMET-001 Phase 1/2A dose-escalation study show encouraging safety, tolerability and clinical activity in multiple genetically defined subgroups of AML

Focused monotherapy development strategy in multiple genetic subtypes:

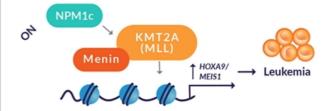
- KMT2A(MLL) rearranged (5-10% of AML)
- NPM1 mutant (30% of AML)
- Other genetic subtypes (e.g., SETD2/RUNX1-mutant AML)

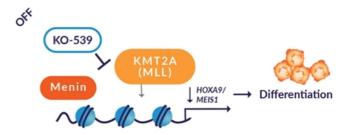
Potential to combine with other targeted therapies and induction chemotherapy




Issued and pending COM patents provide worldwide coverage to 2036

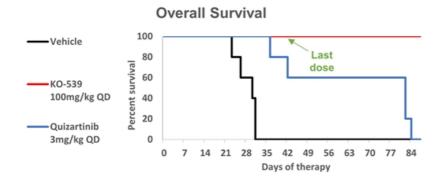
Targeting Menin-KMT2A(MLL) Interaction Provides Potential Therapeutic Intervention into Two Genetic Subsets of AML

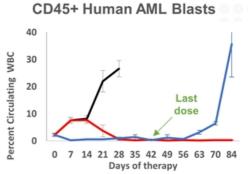

KMT2A-r (MLL-r)

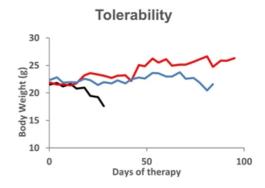


Targeting the menin-KMT2A(MLL) interaction to reverse epigenetic dysregulation in MLL-rearranged AML

NPM1 Mutant AML




A central role for menin-KMT2A(MLL) interaction in epigenetic dysregulation in NPM1-mutant AML


KO-539 Produces Lasting Complete Remissions on a NPM1 / DNMT3A / IDH2 / FLT3-Mutant AML Model

AM7577

- 100% (10/10) of animals treated with single-agent KO-539 cleared their leukemia and became long-term survivors
- Tumor growth inhibition was durable no leukemia was detectable in blood or bone marrow two months after cessation of dosing
- · KO-539 was well tolerated at tested dose levels
- Comparator compound (FLT3 inhibitor) was initially active, but all animals eventually relapsed

₹ K U R A

KOMET-001: Phase 1/2A First-in-Human Study of KO-539 in Patients with Relapsed or Refractory AML

- **OBJECTIVES**
- Determine recommended Phase 2 dose and/or MTD
- Safety and tolerability
- Pharmacokinetics
- Early evidence of antitumor activity

- Safety and tolerability
- Antitumor activity

RURA ONCOLOGY

Continuous Daily Dosing of KO-539 Has Been Well-Tolerated with a Manageable Safety Profile

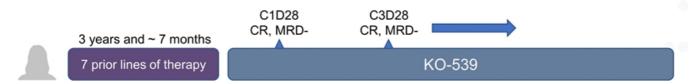
- ➤ No dose discontinuations due to treatment-related adverse events (AEs)
- > No evidence of QT prolongation or other clinically significant ECG changes

Treatment-related AEs (N=12)	Grade ≥ 3 (all)	Grade 1,2 (≥ 10%)
Pancreatitis	1 (8.3%)	0%
Lipase increased	1 (8.3%)	0%
Neutrophil count decreased	1 (8.3%)	0%
Tumor lysis syndrome	1 (8.3%)	0%
Deep vein thrombosis	1 (8.3%)	0%
Nausea	0%	3 (25%)
Rash	0%	2 (16.7%)
Diarrhea	0%	2 (16.7%)

KO-539 Demonstrates Encouraging Early Clinical Activity

Clinical or biological activity reported in six of eight efficacy-evaluable patients

KOMET-001 (n=12)					
Dose	Mutational Profile	CYP3A Inhibitor	# of Prior Regimens	Clinical Activity	
	RUNX1, SRSF2, ASXL1, TET2, STAG2, Yes 3 Decreased peripheral blasts		Decreased peripheral blasts		
400 mg	EZH2, DNMT3A, FAT3, RET	Yes	3	Progressive disease	
400 mg	NPM1	No	2	Not efficacy evaluable at time of data cut	
	DNMT3A, CUX1, ASXL1, IDH2, CBL, U2AF1, RUNX1	Yes	5	Not efficacy evaluable at time of data cut	
NPM1, DNMT3A, KMT2D		Yes	7	Complete remission, MRD-	
	NPM1, FLT3-ITD, TET2, CUX1		4	Morphological leukemia-free state	
200	U2AF1, TET2, p53, DNMT3A, PTPN11		4	Stable disease	
200 mg	200 mg IDH2, SRSF2, DNMT3A, CBL		3	Progressive disease	
	TP53, PICALM (MLLT10)	Yes	3	Not efficacy evaluable	
KMT2A-r		Yes	4	Not efficacy evaluable	
100 mg	SETD2, RUNX1	Yes	2	Complete remission, MRD+	
50 mg	50 mg <i>KMT2A</i> -r		2	Decreasing hydrea requirement	

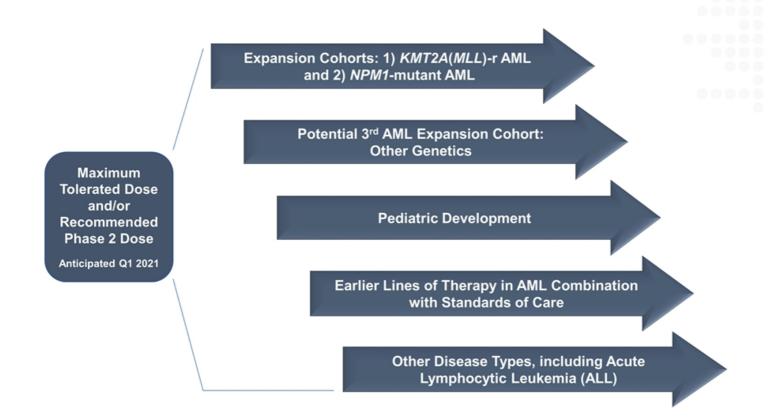

Case Study - SETD2, RUNX1 Mutant AML

Patient Characteristics				
Demographics	69-year-old male			
Mutational profile	SETD2, RUNX1			
Prior lines of therapies	2 (decitabine; CD33/CD3 bispecific antibody)			
KO-539 dose	100 mg, escalated to 200 mg during cycle 7			
# of KO-539 cycles	8			
CYP3A4 inhibitor	Yes (fluconazole)			
Baseline bone marrow blasts	56%			
Clinical activity	Complete remission, MRD+ (0.8% blasts)			
Grade ≥3 TRAEs	Gr. 3 deep vein thrombosis			

Preliminary data as of November 2, 2020

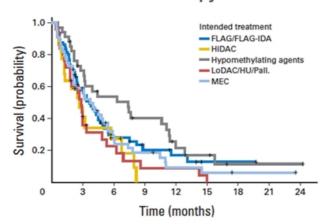
Case Study – NPM1, DNMT3A, KMT2D, FLT3-TKD Mutant AML

Patient Characteristics			
Demographics	44-year-old female		
Mutational profile NPM1, DNMT3A, KMT2D, FLT3-TKD			
Prior lines of therapies	7 (incl. decitabine+venetoclax, gilteritinib, itacitinib, fludarabine, bortezomib)		
KO-539 dose	200 mg		
# of KO-539 cycles	3+ (on treatment)		
CYP3A4 inhibitor	Yes (posaconazole)		
Baseline bone marrow blasts	14%		
Clinical activity	Complete remission, MRD- (0% blasts)		
Grade ≥3 TRAEs	Gr. 4 lipase increased, Gr. 3 pancreatitis, Gr. 3 neutrophil count decreased		


Preliminary data as of November 2, 2020

Summary of Preliminary Data from KOMET-001

- KO-539 is a potent and selective inhibitor of the menin-KMT2A/MLL complex
- KO-539 has been well tolerated with a manageable safety profile to date
 - Observed toxicities appear to be reversible and manageable
 - No evidence of QTc prolongation
- KO-539 demonstrates encouraging signs of clinical activity in multiple genetically defined subgroups of AML
- KO-539 pharmacokinetics and clinical activity do not appear to be affected by co-administration of a CYP3A4 inhibitor
- Continuing to enroll patients in dose escalation, currently evaluating 600 mg cohort
 - Anticipate determination of recommended Phase 2 dose in Q1 2021



Multiple Expansion Opportunities in Acute Leukemias

Relapsed/Refractory AML is a Challenging **Disease Associated with Poor Outcomes**

Chemotherapy¹

Targeted Therapies

Drug Name	AML Subset	ORR	Median OS
Enasidenib	IDH2 mutant	40.3%	9.3 mos ²
Ivosidenib	IDH1 mutant	41.6%	8.8 mos ³
GO	CD33+ AML	26%	11.6 mos ⁴
Gilteritinib	FLT3 mutant	34%	9.3 mos ⁵
Quizartinib	FLT3-ITD mut	27%	6.2 mos ⁶

Credit: Dr. Wang, Roswell Park Comprehensive Cancer Center

NPM1-Mutant AML

Estimated 6,000 new cases in the U.S. per year⁷

(~30% of AML)

Known co-mutations confer worse prognosis8 and represent rational combination approaches

KMT2A(MLL)-Rearranged AML

Estimated 1,000-2,000 new cases in the U.S. per year⁷

(5-10% of AML)

NCCN guidelines denote that MLL-r confers poor prognosis9

Cortes et al. Lancet Oncol. 2019 Jul;20(7):984-997
 SEER statistics for AML in the US, accessed April 2020
 Döhner et al. Blood. 2017 Jan 26;129(4):424-447
 NCCN. AML Guidelines (version 3.2020). Accessed May 2020

Roboz et al. J Clin Oncol. 2014 Jun 20;32(18):1919-26
 Stein et al. Blood. 2017 Aug 10;130(6):722-731
 DiNardo et al. N Engl J Med. 2018 Jun 21;378(25):2386-2398
 Taksin et al. Leukemia. 2007 Jan;21(1):66-71
 Perl et al. Engl J Med. 2019 Oct 31;381(18):1728-1740

Investment Highlights

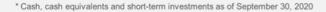
Targeted Oncology

Advancing two wholly owned, targeted oncology drug candidates using a precision medicine approach; fast-to-market strategy

Tipifarnib: Farnesyl transferase inhibitor

- Registration-directed trial in HRAS mutant head and neck squamous cell carcinoma (HNSCC) ongoing
- Opportunity to expand to HRAS and PI3Kα dependent tumors

Proprietary Pipeline


 Multiple clinical proof-of-concept studies support significant lifecycle expansion opportunities

KO-539: Menin inhibitor

- Potent and selective inhibitor of the menin-KMT2A(MLL) proteinprotein interaction
- Potential to target ~35% of acute myeloid leukemia (AML)
- Preliminary Phase 1 data show encouraging safety, tolerability and clinical activity in multiple genetically defined subgroups of AML

Strong Financials

\$325.4 million in cash* provides runway into 2023

DEVELOPING PRECISION MEDICINES FOR THE TREATMENT OF CANCER

