

Developing Precision Medicines for the Treatment of Cancer

Corporate Presentation

April 2019

Forward-Looking Statements

This presentation contains forward-looking statements. Such statements include, but are not limited to, statements regarding our research, preclinical and clinical development activities, plans and projected timelines for tipifarnib, KO-947 and KO-539, plans regarding regulatory filings, our expectations regarding the relative benefits of our product candidates versus competitive therapies, and our expectations regarding the therapeutic and commercial potential of our product candidates. The words "believe," "may," "will," "estimate," "promise," "plan", "continue," "anticipate," "intend," "expect," "potential" and similar expressions (including the negative thereof), are intended to identify forward-looking statements. Because such statements are subject to risks and uncertainties, actual results may differ materially from those expressed or implied by such forward-looking statements. Risks that contribute to the uncertain nature of the forward-looking statements include: our preclinical studies and clinical trials may not be successful; the U.S. Food and Drug Administration (FDA) may not agree with our interpretation of the data from clinical trials of our product candidates; we may decide, or the FDA may require us, to conduct additional clinical trials or to modify our ongoing clinical trials; we may experience delays in the commencement, enrollment, completion or analysis of clinical testing for our product candidates, or significant issues regarding the adequacy of our clinical trial designs or the execution of our clinical trials may arise, which could result in increased costs and delays, or limit our ability to obtain regulatory approval; our product candidates may not receive regulatory approval or be successfully commercialized; unexpected adverse side effects or inadequate therapeutic efficacy of our product candidates could delay or prevent regulatory approval or commercialization; and we may not be able to obtain additional financing. Additional risks and uncertainties may emerge from time to time, and it is not possible for Kura's management to predict all risk factors and uncertainties.

All forward-looking statements contained in this presentation speak only as of the date on which they were made. Other risks and uncertainties affecting us are described more fully in our filings with the Securities and Exchange Commission. We undertake no obligation to update such statements to reflect events that occur or circumstances that exist after the date on which they were made.

Investment Highlights

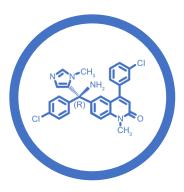
Targeted
OncologyAdvance pipeline of targeted drug candidates for selected solid tumors
and hematologic malignanciesUtilize precision medicine approaches; Fast-to-market potential

Proprietary
 Pipeline
 Tipifarnib: Potent farnesyl transferase inhibitor; Registration-directed and multiple Phase 2 trials ongoing; Biomarker-guided development; Issued patents and potential for regulatory exclusivity
 KO-947: ERK inhibitor; Phase 1 dose-escalation trial ongoing
 KO-539: Inhibitor of menin-MLL interaction; IND cleared March 2019

Near-TermAdditional Phase 2 data in HRAS mutant SCCs and CXCL12+Milestoneshematologic malignancies

Team Proven oncology drug development experience

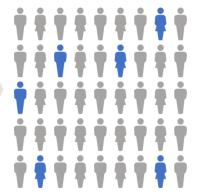
Financials \$179M cash as of December 31, 2018*


Advancing Pipeline of Targeted Drug Candidates

	CI CH3 CH3 CI CI CI CI CI CI CI CI CI CH3 CI CH3 CI CH3 CI CH3 CI CH3 CI CH3 CI CH3 CI CH3 CI CH3 CI CI CI CI CI CI CI CI CI CI CI CI CI C	<u>ک</u> ک KO-947	<u>پُ</u> رُک KO-539
Therapeutic Target	 Farnesyl transferase 	 ERK kinase 	 Menin-MLL interaction
Biomarker Strategies	 HRAS mutant solid tumors CXCL12-expressing hematologic malignancies and solid tumors 	 MAPK-pathway dysregulated tumors 11q13 amplified solid tumors 	 MLL-rearranged (MLL-r) leukemias NPM1 and DNMT3A mutant liquid tumors
Development Status	 Registration-directed study and multiple Phase 2 trials ongoing* Two biomarkers identified with issued patents 	 Ongoing Phase 1 dose-escalation trial 	 Phase 1 trial expected to initiate in Q2 2019

Biomarker Strategies May Unlock Clinical Activity and Commercial Value

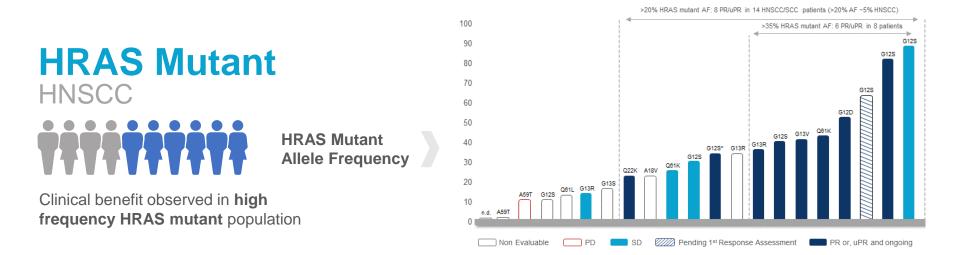
Targeted Therapy



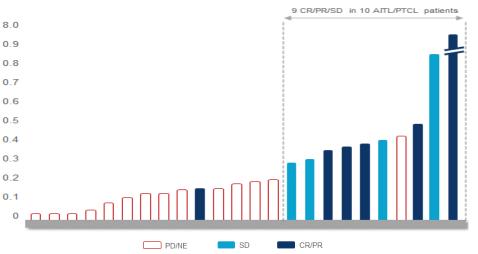
Analytical Technologies

(next-generation sequencing, expression profiling, etc.)

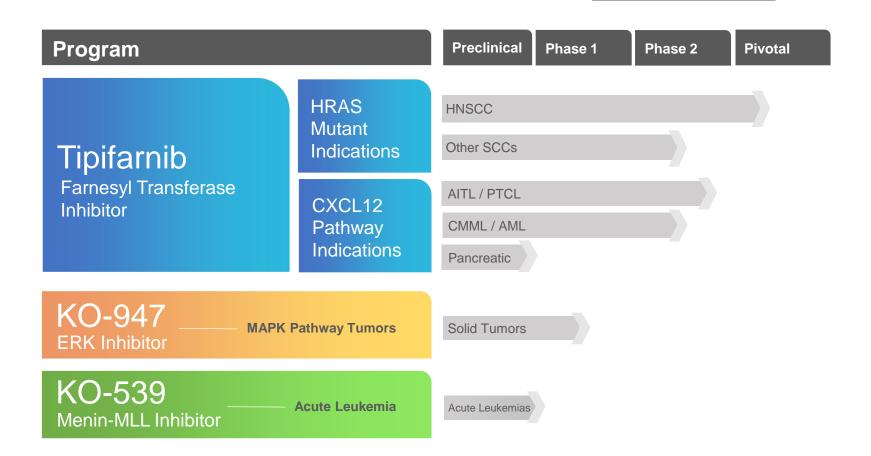
Selected Patient Population



Potential Value


- Enrichment of clinical activity
- Higher probability of success
- Expedited development and regulatory path
- Strong commercial case

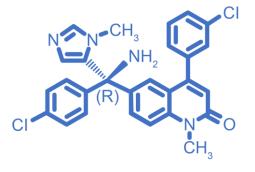
Multiple Clinical Proof-of-Concepts Reinforce Precision Medicine Approach



CXCL12+ AITL/PTCL High CXCL12 Levels

Product Candidate Pipeline

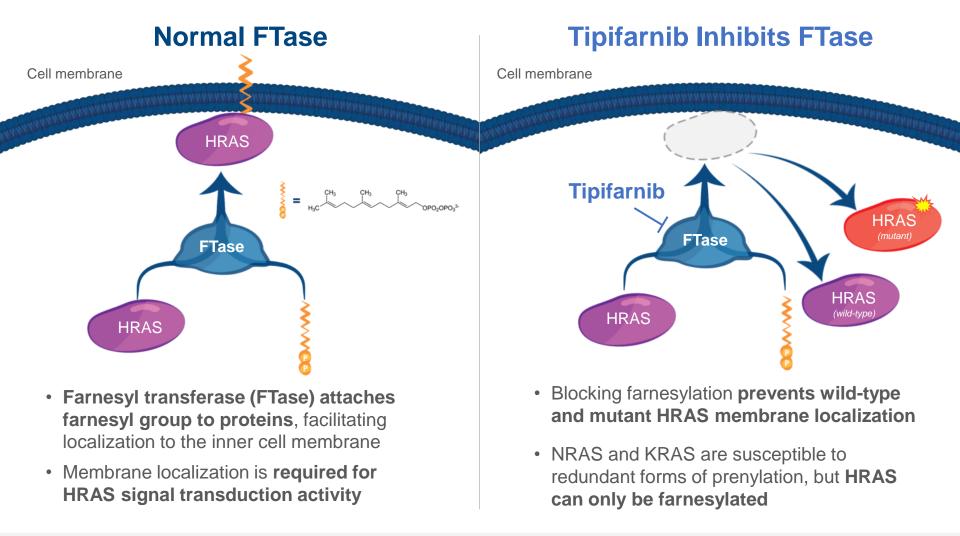
Investigator-Sponsored Trials | HRAS Mutant Urothelial Carcinomas, Samsung Medical Center | HRAS Mutant Lung Squamous Cell Carcinomas (LSCC), Spanish Lung Cancer Group



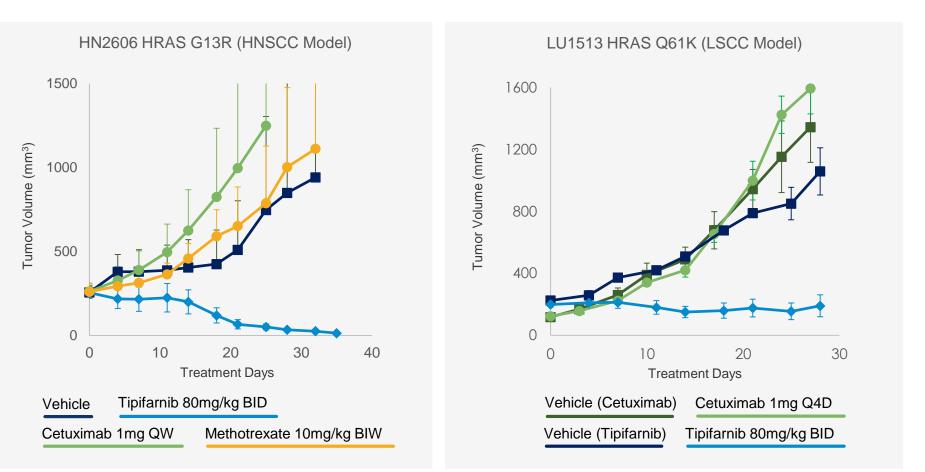
Tipifarnib in HRAS Mutant Solid Tumors

- **02** Tipifarnib Using CXCL12 Pathway Biomarkers
- **03** KO-947 (ERK Inhibitor)
- **04** KO-539 (Menin-MLL Inhibitor)

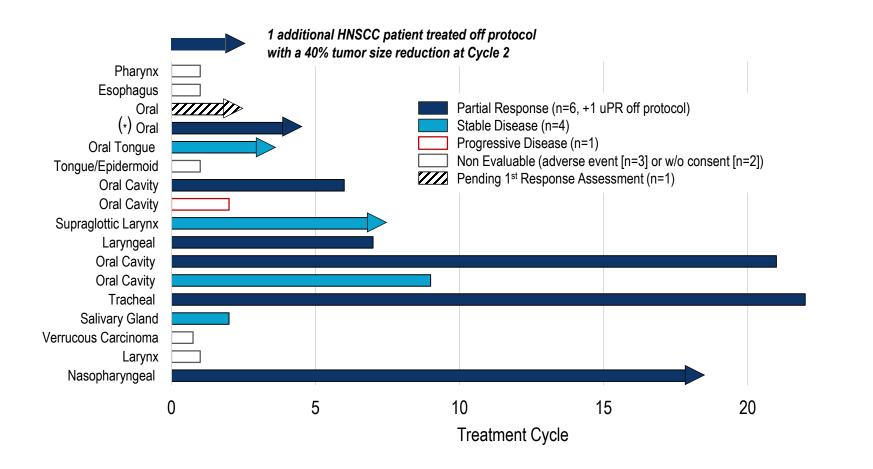
Tipifarnib: Selective Farnesyl Transferase Inhibitor with Substantial Prior Clinical Experience


- Extremely potent and selective inhibitor of farnesyl transferase¹ licensed from Janssen
- Well characterized > 5,000 patients treated in > 70 prior studies
- Anecdotal activity of durable responses but developed before advent of personalized medicine approaches, including genetic selection

- Manageable safety profile as single agent therapy (< 25% treatment discontinuation)
- Tipifarnib adverse events (reported from 472 solid tumor patients):
 - Myelosuppression (neutropenia 25%, anemia 31%, thrombocytopenia 19%)
 - Non-heme > 25%: fatigue (41%) and GI unspecific (nausea 47%, anorexia 33%, diarrhea 32%, vomiting 32%)



Farnesylation is Required for HRAS Activity


Tipifarnib is a Potent Inhibitor of HRAS Mutant Tumors

- Regressions observed in preclinical PDX models of SCC carrying the HRAS mutant oncogene
- Stasis or regression observed in other tumor types carrying HRAS mutations

Phase 2 Study of Tipifarnib: HNSCC Patients (n=17 on study + 1 patient treated off protocol)

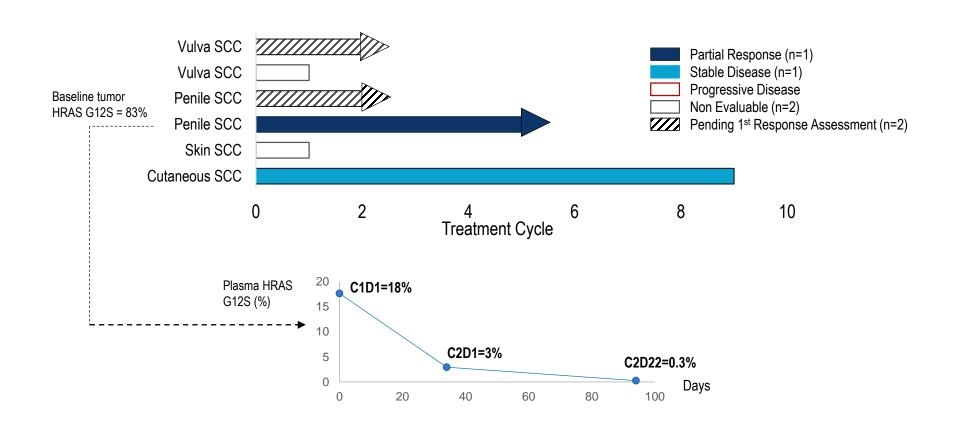
25

Resolution of Disfiguring Skin Lesions with Tipifarnib Post-Immunotherapy Failure

- Patient 012-001: 69-year-old male with recurrent oral cavity SCC
- Prior therapies: TPEx (docetaxel CDDP cetuximab), nivolumab + lirilumab
- Molecular status: HRAS G12S, TP53 R248Q
- 27.5% HRAS mutant allele frequency
- Initial PR (40% tumor reduction) on Cycle 1 Day 15 (7 days tipifarnib + 7 days rest; 56% reduction at Cycle 3

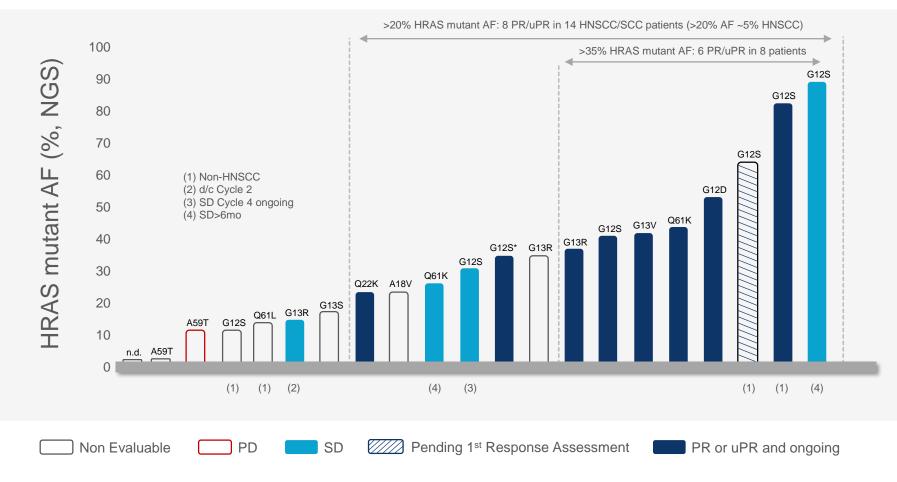
Cycle 1 Day 1

Cycle 1 Day 7


Cycle 1 Day 20

Ho et al. 2018 Multidisciplinary Head and Neck Cancers Symposium #217 | Results based on preliminary data as of 2/8/18 Images provided by Dr. Caroline Even and Dr. Charles Ferte, IGR, Paris

Cycle 2 Day 1


Phase 2 Study of Tipifarnib: Other SCC Patients (n=6)

Association of HRAS Mutant Allele Frequency with Clinical Benefit from Tipifarnib

(HNSCC, SCC, n=21)

Ho *et al.* European Society for Medical Oncology 2018 Congress #1046 | Study KO-TIP-001 patients with HN and non-HN SCC tumors with available HRAS mutant allele data (10/17/18); one additional HNSCC patient was treated off protocol | * Allele frequency obtained post-ESMO | Pending analysis: 1 HNSCC pending 1st scan, 1 SCC pending 1st scan, 1 SCC SD

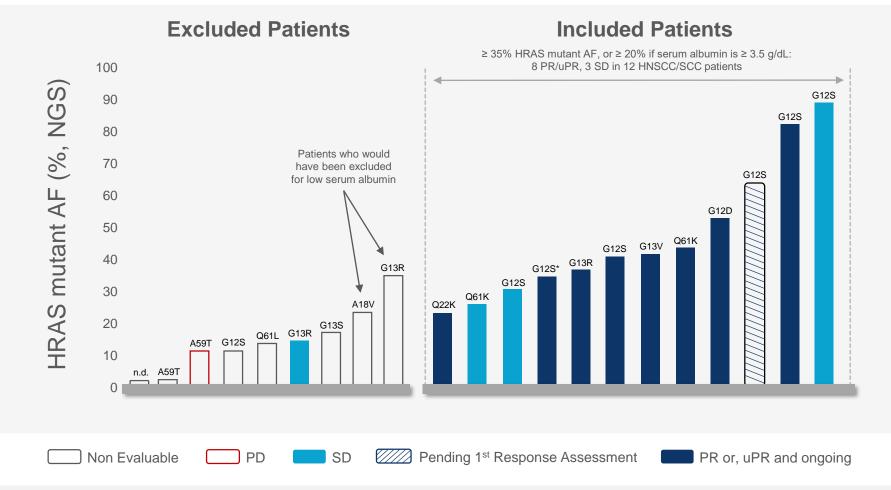
Tipifarnib Development Program in HRAS Mutant HNSCC

HRAS mutant patients who are not eligible for participation in AIM-HN may be referred to RUN-HN

AIM-HN: Global, multi-center registration directed trial of tipifarnib in HRAS mutant HNSCC **SEQ-HN:** Matched control study to identify HRAS mutant HNSCC patients and characterize activity of standard of care

AIM-HN: Trial Design

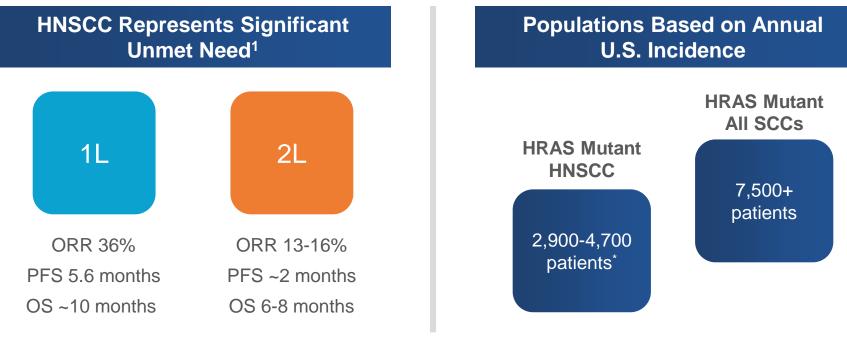
- Global, registration-directed trial
 - Targeting ~ 100 clinical sites worldwide
 - Anticipate ~ two years to enroll
- Primary endpoint: ORR by IRR
- Statistical assumptions
 - At least 59 subjects, 80% power, 15% ORR (null hypothesis) and 30% ORR (response rate of interest)
- Minimum tumor HRAS mutant allele frequency of 20%
 - Tumor HRAS mutation with an allele frequency $\ge 35\%$, or $\ge 20\%$ if serum albumin is ≥ 3.5 g/dL
- 600 mg BID starting dose given daily in alternate weeks
- As currently designed, AIM-HN may be adequate to support an NDA seeking accelerated approval (FDA end of Phase 2 meeting)
 - SEQ-HN data to provide a benchmark of the activity of standard of care in HRAS mutant HNSCC (relevant for potential label discussion and post approval commitments)
- Trial initiated and open for enrollment in November 2018



X

AIM-HN KO-TIP-007

Activity When AIM-HN Criteria Applied Retrospectively to Phase 2 Study


(HNSCC, SCC, n=21)

Ho *et al.* European Society for Medical Oncology 2018 Congress #1046 | Study KO-TIP-001 patients with HN and non-HN SCC tumors with available HRAS mutant allele data (10/17/18); one additional HNSCC patient was treated off protocol | * Allele frequency obtained post-ESMO | Pending analysis: 1 HNSCC pending 1st scan, 1 SCC pending 1st scan, 1 SCC SD

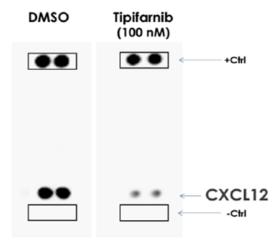
HRAS Mutant Cancers: Market Opportunity

- Outcome of SOC in unselected populations
- Lower response rate expected in HRAS mutant patients²

¹ N Engl J Med. 2008 Sep 11;359(11):1116-27 | Keytruda & Opdivo package inserts | J Clin Oncol. 2007 Jun 1;25(16):2171-7 ² Journal of Clinical Oncology 2012 30:15_suppl, 5574-5574

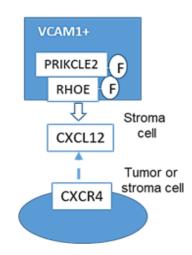
* Estimate is between 5-8% of total HNSCC population, depending on allele frequency of HRAS mutations (Source: TCGA, internal data)

- *Tipifarnib in HRAS Mutant Solid Tumors*
- KO-947 (ERK Inhibitor)
- KO-539 (Menin-MLL Inhibitor)


Relevance of CXCL12 Inhibition as a Targeted Therapy

- Key characteristics of CXCL12
 - Expressed primarily by immune cells, endothelial cells and stromal fibroblasts that constitute the tumor microenvironment
 - Binds and activates two receptors, CXCR4 and CXCR7
 - CXCL12 and its receptors are key factors linking cancer cells with tumor microenvironment
- Potential role of CXCL12 inhibition in cancer therapy
 - Inhibition of growth and homing of lymphoid and myeloid tumors¹
 - Interference with tumor cell metastasis into secondary organs, *e.g.* inhibition of bone recurrence of solid tumors in adjuvant settings – after primary tumor is removed by surgery/chemoradiation²
 - Reversion of the tolerogenic effect of a tumor microenvironment rich in immunosuppressive cells such as regulatory T-cells and neutrophils, *e.g.* synergy of CXCL12 and PD-L1 inhibition in pancreatic tumor models³

¹ Burger *et al.* 2007. *Br J Haematol.* 137:288-96 | ² Epstein 2004. *Nat Rev Cancer* 4:901-9 | ³ Feig *et al.* 2013. *Proc Natl Acad Sci U S A.* 110:20212-7



Tipifarnib is a Potent Inhibitor of CXCL12 Secretion by Stromal Cells

1.05 1 0.95 0.9 0.85 0.8 1 2 SCREENING CYCLE 1 DAY 7 CYCLE 2 DAY 1 CYCLE 3 DAY 1

Tipifarnib downregulates CXCL12 secretion ex-vivo in CD1 mouse bone marrow stroma cultures Decrease in CXCL12 plasma levels in two tipifarnib-treated T-cell lymphoma patients (tipifarnib dose 300 mg bid for 21 of 28-day cycles)

Gene expression of the uniquely farnesylated RHOE (RND3) and PRICKLE2 proteins is strongly associated with bone marrow stroma CXCL12 expression, suggesting potential CXCL12related tipifarnib targets¹

Tipifarnib Using CXCL12Pathway Biomarkers:PTCL / AITL

- *Tipifarnib in HRAS Mutant Solid Tumors*
- KO-947 (ERK Inhibitor)
- KO-539 (Menin-MLL Inhibitor)

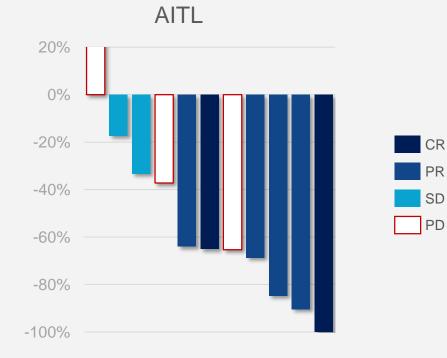
PTCL: CXCL12-Expressing Lymphoma with a Significant Unmet Need

	BELEODAQ [®] (BELINOSTAT)	ISTODAX [®] (ROMIDEPSIN)	FOLOTYN [®] (PRALATREXATE)
Efficacy Study	Single Arm ¹ N=120	Single Arm ² N=130	Single Arm ³ N=109
Prior Therapies (range)	2 (1-8)	2 (1-8)	3 (1-12)
Overall Response Rate	25.8%	26.2%	27%
Median PFS/TTP	1.6 months	4.0 months	3.5 months
Median Overall Survival	7.9 months	11.3 months	14.5 months
Dosing	IV infusion ⁴	IV infusion ⁵	IV push ⁶

Approved therapies in relapsed / refractory PTCL approved based on single-arm clinical trials of 130 patients or fewer with response rates in the range of 25-27% and limited duration of clinical benefit in unselected populations

¹ Beleodag[®] package insert

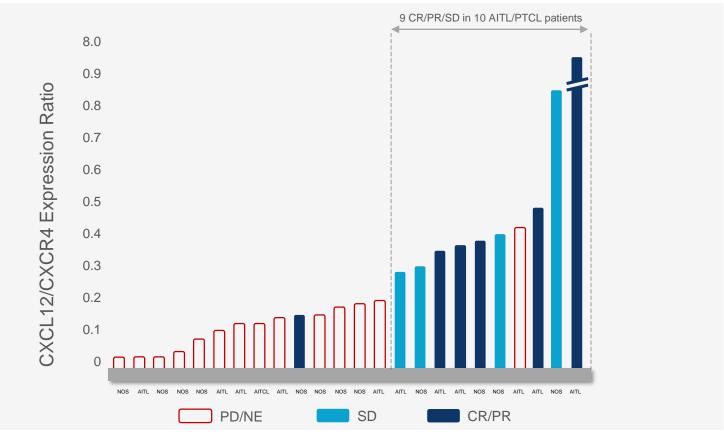
⁴ 1,000 mg/m² administered over 30 mins by IV infusion once daily on days 1-5 of a 21-day cycle ⁵ 14 mg/m² administered over a 4-hour period by IV on days 1, 8 and 15 of a 28-day cycle


² Istodax[®] package insert ³ Folotyn[®] package insert

⁶ 30 mg/m² administered over 3-5 mins as an IV push once weekly for 6 weeks in 7-week cycles

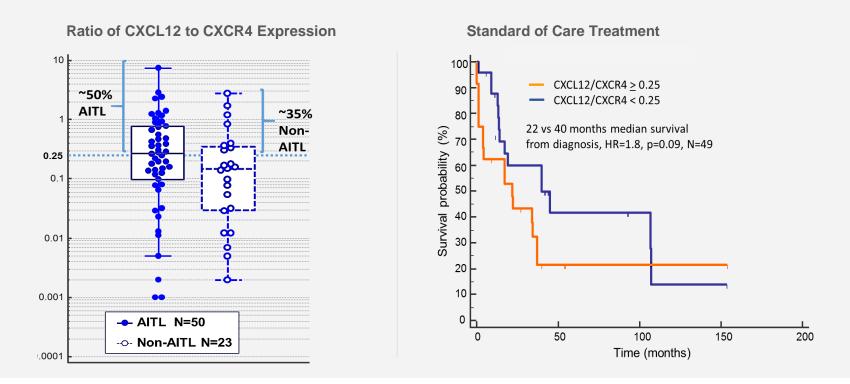
Clinical Activity in Phase 2 Study of Tipifarnib

Change in SPD (%)


CXCL12 High PTCL 20% -20% -40% -60%

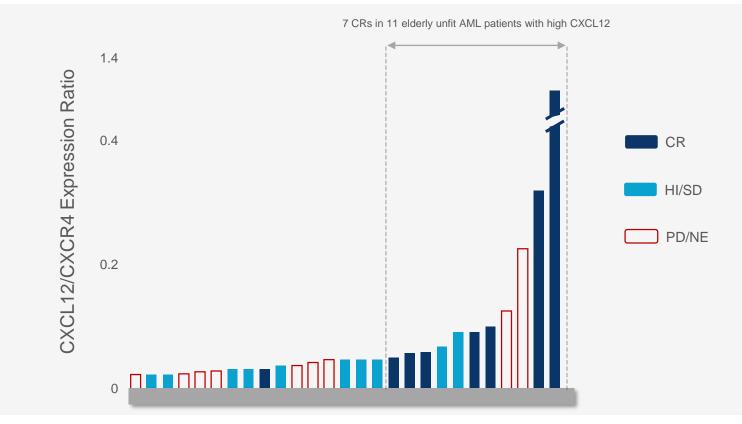
-100%

Witzig *et al.* ASH 2018 #2937 | Preliminary data as of 11/21/18 | Missing measurement data from 2 subjects with best response of PD SPD: Sum of the products of diameters


Association of High CXCL12 with Clinical Benefit from Tipifarnib in AITL/PTCL

- The High CXCL12/CXCR4 subset of PTCL patients experienced 50% ORR and 90% clinical benefit with tipifarnib after a median of 3 prior therapies
- High CXCL12/CXCR4 expression ratio had 90% sensitivity and 93% specificity to identify PTCL patients likely to benefit from tipifarnib

High CXCL12 Defines Poor Prognosis with Standard of Care Therapy in PTCL

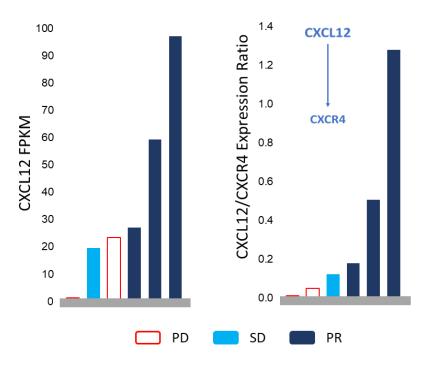

- A trend for worse prognosis was observed in PTCL patients with high CXCL12/CXCR4 expression ratio when treated with standard of care therapy
- Increasing levels of CXCL12 resulted in significantly more negative prognosis for SOC (not shown)
- CXCL12 high subset of patients represents ~40% of PTCL

Tipifarnib Using CXCL12Pathway Biomarkers: OtherHematologic Malignancies

- Tipifarnib in HRAS Mutant Solid Tumors
- KO-947 (ERK Inhibitor)
- KO-539 (Menin-MLL Inhibitor)

Association of High CXCL12 with Activity of Tipifarnib in Elderly Unfit AML

 CTEP20 study: Patient subset – available AML marrow samples with NRAS WT or unknown, N=27 (NCBI GEO, GSE8970)¹

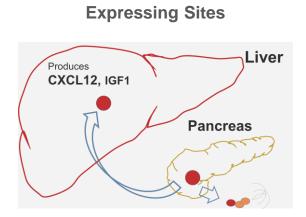


CXCL12 Expression a Potential Marker of Clinical Benefit in DLBCL and CTCL

- Activity of tipifarnib in relapsed/refractory lymphomas was previously investigated in a single-agent Phase 2 trial (N=93)¹
- Pre-treatment tumor samples and best response data were obtained from 20 patients, including 6 diffuse large B-cell lymphoma (DLBCL), 6 Hodgkin lymphoma and 2 mycosis fungoides
- Six PRs were reported in this subset: 3 in DLBCL, 1 in Hodgkin lymphoma and 2 in mycosis fungoides
- High pre-treatment tumor CXCL12 expression predicted objective response in DLBCL (right)
- Both mycosis fungoides patients with high CXCL12 expression experienced PRs
 - Mycosis fungoides is the most common form of cutaneous T-cell lymphoma (CTCL)
- No relationship between CXCL12 expression and clinical benefit in Hodgkin lymphoma was observed in this dataset

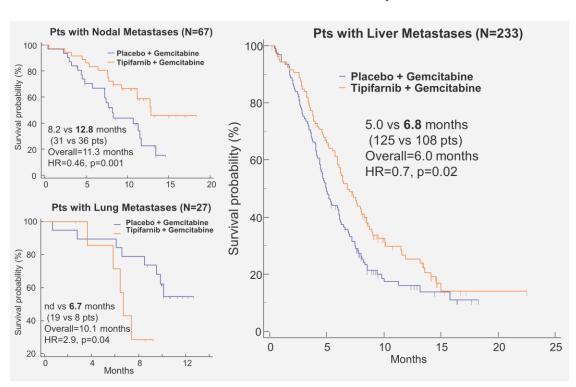
Objective Responses in Tipifarnib-treated DLBCL Patients with High Tumor CXCL12 Expression²

Tipifarnib Using CXCL12 Pathway Biomarkers: Solid Tumors


- **01** *Tipifarnib in HRAS Mutant Solid Tumors*
- **03** KO-947 (ERK Inhibitor)
- **04** KO-539 (Menin-MLL Inhibitor)

Solid Tumors: Potential CXCL12-Driven Tumor Indication in Pancreatic Cancer

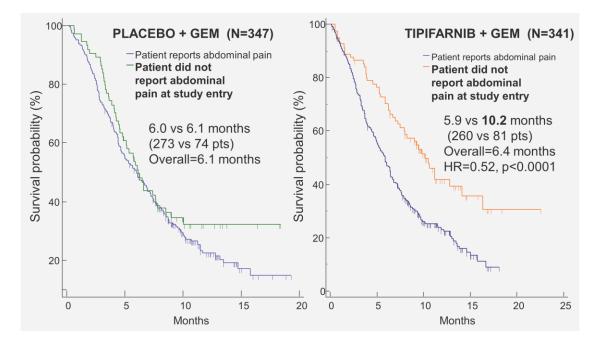
- Elevated CXCL12 expression is known to be a poor prognosis factor in patients with pancreatic, lung and esophageal-gastric cancers¹
- Kura conducted a retrospective analysis of INT-11, a randomized, doubleblind, placebo-controlled Phase 3 trial of gemcitabine + tipifarnib versus gemcitabine + placebo in patients with advanced pancreatic adenocarcinoma previously untreated with systemic therapy
 - Tipifarnib was given at 200 mg bid orally continuously; gemcitabine was given at 1,000 mg/m(2) intravenously weekly x 7 for 8 weeks, then weekly x 3 every 4 weeks; a total of 688 patients were enrolled
 - The median overall survival for the experimental arm was 6.4 vs 6.1 months for the control arm (P =.75). Neutropenia and thrombocytopenia grade > 3 were observed in 40% and 15% in the experimental arm patients versus 30% and 12% in the control arm²
- Results were presented at ASCO GI 2019



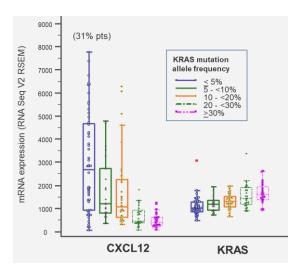
Association between CXCL12 Expression and Clinical Benefit in Pancreatic Cancer

Disease Model for CXCL12

- CXCL12/IGF1 induce tumor homing to liver and lymph nodes¹
- Lymph nodes and regional paratumor vessels produce high levels of CXCL12, IGF1



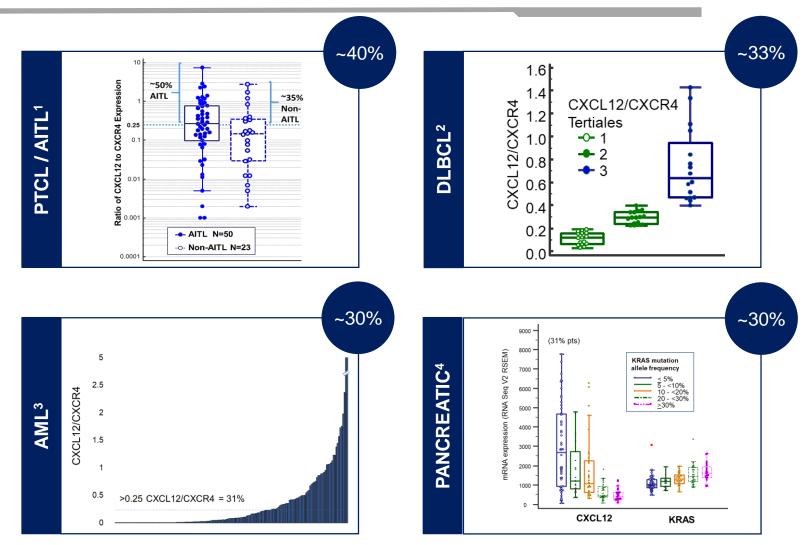
Nodal and Liver Metastases Associated with Clinical Benefit from Tipifarnib



Potential Predictive Value of Absence of Abdominal Pain and Low KRAS mutation

Subset analysis of study INT-11 survival based on expected association between high CXCL12 expression and attenuation of abdominal pain

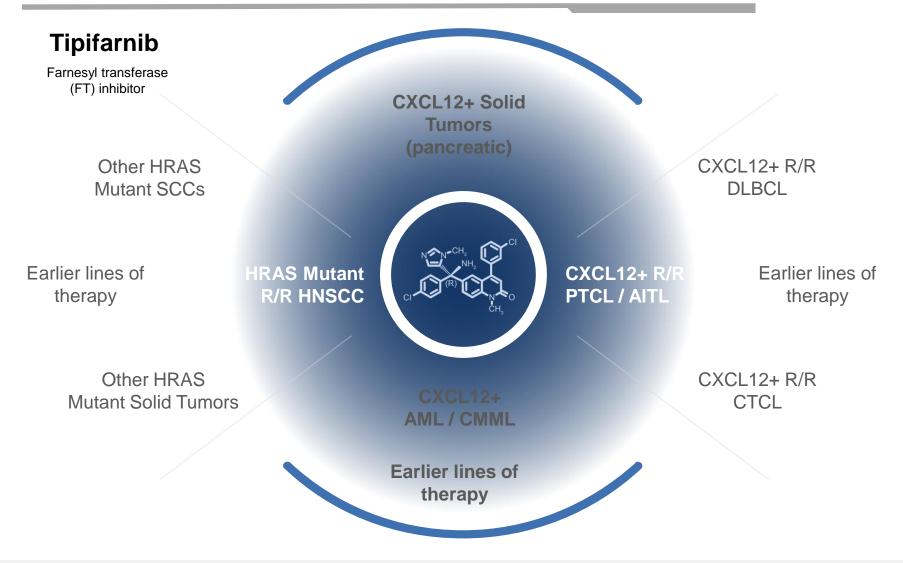
 Absence of abdominal pain may be a surrogate of tipifarnib activity. High CXCL12 expression attracts CXCR7 expressing Schwann cells resulting in attenuated cancer-associated pain¹ High CXCL12 Expression in Pancreatic Tumors with ≤ 5% KRAS Mutant Allele Frequency


KURA

Tipifarnib Using CXCL12Pathway Biomarkers:
Opportunity

- *Tipifarnib in HRAS Mutant Solid Tumors*
- KO-947 (ERK Inhibitor)
- KO-539 (Menin-MLL Inhibitor)

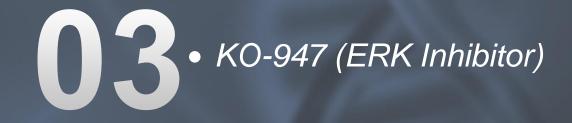
CXCL12-High Populations Represented in Indications with High Unmet Need



CXCL12-Driven Indications

Indication	Est. Annual U.S. Incidence*
Lymphoma	
Diffuse Large B-Cell Lymphoma (DLBCL)	27,650 ¹
Peripheral T-Cell Lymphoma (PTCL) / Angioimmunoblastic T-cell Lymphoma (AITL)	3,950 ¹
Cutaneous T-Cell Lymphoma (CTCL) / Mycosis Fungoides	1,690 ¹
Myeloid Neoplasia	
Acute Myeloid Leukemia (AML)	21,450 ²
Chronic Myelomonocytic Leukemia (CMML)	1,100 ²
Solid Tumor	
Pancreatic Cancer	56,770 ²

Cornerstone Proof-of-Concepts Support Expansion to Additional Indications



Biomarker Strategies Enlarge Patent Estate for Therapeutic Uses of Tipifarnib

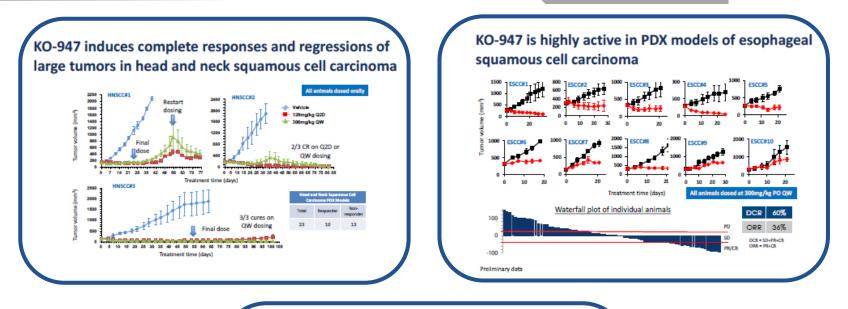
- U.S. patent 9,707,221 issued in July 2017 provides exclusivity for tipifarnib in HRAS mutant HNSCC indication to 2036
- Corresponding patents beginning to issue in foreign countries
- U.S. patent 9,956,215 issued in May 2018 provides exclusivity for tipifarnib in certain CXCL12-expressing cancers to 2037
- U.S. patent 10,137,121 issued in November 2018 provided exclusivity for tipifarnib in AITL to 2037
- Additional patent applications pending in the U.S. and foreign countries for tipifarnib in other biomarkers and disease indications
- Patents illustrate potential of broader strategy to generate intellectual property related to use of drug candidates in biomarker-defined populations

					107221B2
	(1)	Gualberto et al.	s Patent	(10) Patent No.: (43) Date of Patent	US 9,707,221 B2
	(54)	METHODS OF TREATIN	SG CANCER	5.602.098 A 22697 1	lebri et sl
		PATIENTS WITH FARNE INHIBITORS	SVLIRANSFERASI	5,700,805 A 12,1997 E	untheory et al. holf er al.
	(71)	Applicant Kura Oncology, ((US)	Ine., La Jolla, CA	5,750,567 A STOR B	indeeps ar ad. reeknan ar ad. Rikoopy ar ad.
	(72) la	Catherine Rose Sc (US)	e, Acton, MA (US); feels, Woburn, MA	5.703.403 A 61998 Da 5.703.402 A 71998 Da 5.807.832 A 91998 Da 5.807.832 A 91998 Da	ng et al. 10000e et al. Let al.
	(73) Au	ignee: Knrs Oncology, Inc (US)	, La Jolla, CA	5.852.010 A 127998 Ged 5.856.126 A 127999 Au 5.856.429 A 12999 Clau 5.859.015 A 12999 Clau	iam of al. inty of al.
	(*) Notic	potent is extended or		5.861.529 A 1/1999 Band 5.869.682 A 2/1999 Devol 5.872.135 A 2/1999 Devol	nie sit al. Nis
		U.S.C. 134(b) by 0 day This patent is subject a claimer.	FM.	5.880,140 A 3.1999 Doll at 5.880,140 A 3.1999 Asthew 5.889,233 A 3.1999 Bandoi 5.891,888 A 3.1999 Bandoi	ral. W
	(21) Appl. N			5,936,097 A #1999 Contene 5,939,557 A #1999 Authons	norm et al.
	(22) Filed:	Nov. 8, 2016		5,065,539 A 10,1999 Afrida 4 5,065,539 A 10,1999 Sobii at 1	N al.
	(65)	Prior Publication Data		5,968,952 A 10/1999 Venet at a 5,972,965 A 10/1999 Decedure	d.
	US 2017/0	071931 A1 Mar. 16, 201		5.972.984 A 10/1999 Authory a (Continued)	e al.
	Reta	ted U.S. Application Data		FOREIGN PATENT DOCU	
1	(63) Continuation Aug. 16, 201	of application No. 15,759.	458, filed on WO	WO 94/10/38 1/1004	MENTS
	steller sets with	5h	4349	943 97/21701 6/1997	
		plication No. 62/372,662, fil invest application No. 62/310		(Continued)	
	62/241 010 0	apro, provisional applica	ation No.	OTHER PUBLICATION	
		62/218,927, filed on Sep. 1 62/218,927, filed on Sep. 1 lostion No. 62/206,194, filed	15. 2015, 13:35-4 on Aue Tanack	IE (Essentiation of the	
(51)	Int. CL		New York	10971 *	ock and Hill, eds.
	A61K 31/4709 461K 35/06	(2006.02)	Philips an 39-46).**	Arkins (leternational Immunology Oct	16, 2014 27 (1):
	120 1/68	(2006.01) (2006.01)	Rash Bas P01112.1.3	nan (P01112.1 https://www.acbi.alm Nov. 30, 2016).*	nih.gov/protein/
(52) 1			Klass CM e	and all allow about a second	
0		31/2709 (2013.01); A61K . C12Q 1/6886 (2013.01); C	4506 VELCADES	the at 12.10 Sciences 7 2006 E \$98-9	(7).*
	(2013	106 (2013.01); C13Q 2600		7).*	downloaded
	C C C MANNIK WILLS	# Search		(Continued)	
		complete search history.	Primary Exa (74) Amount	miner - Peter J Reddig	
	Reference		(37)	Agent, or Firm - Jones Day	
	U.S. PATENT D	OCUMENTS	The presson is	ABSTRACT	
238,922	A \$1921 G	there are a	biology and car	evention relates to the field of teer hiology. Specifically, the pres-	molecular
426,245	A \$7905 Ba		solution relates to a	nethods of treating a subject with nethods of treating a subject with	ta famo.
04,212 / 13,430 /	4 4/2005 De 1		whether the sub-	herd in Which is in methods det	WTRAINING STATE
	7/2006 March	et al.	treatment hased	on genotyping and expression per stical orthogond R 4	the FT1
4,537 A (629 A 3,59 A	11/1996 Circos	tone et al.	subject.	gical genes and RAS mutation stat	us in the
	12/1996 Breaks				

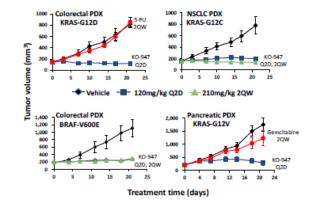
- Tipifarnib in HRAS Mutant Solid Tumors
- Tipifarnib Using CXCL12 Pathway Biomarkers
- KO-539 (Menin-MLL Inhibitor)

KO-947: Potent Inhibitor of ERK1/2

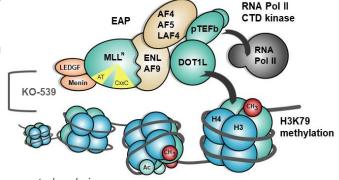
- Summary
 - Potent, selective small molecule inhibitor of ERK1/2
 - Demonstrates prolonged pathway modulation in preclinical tumor models
 - Multiple tumors, including SCCs and KRAS mutant adenocarcinomas, identified as sensitive to KO-947 as monotherapy in preclinical models


- Mechanism-based and SOC combinations under evaluation

Clinical Development and Status


- Unique pharmacology enables intermittent dosing schedules
- Potential biomarkers, including 11q13 amplifications in SCCs, for sensitive subsets have been identified
- Phase 1 dose escalation trial ongoing
- Initial Phase 1 clinical data anticipated in 2019

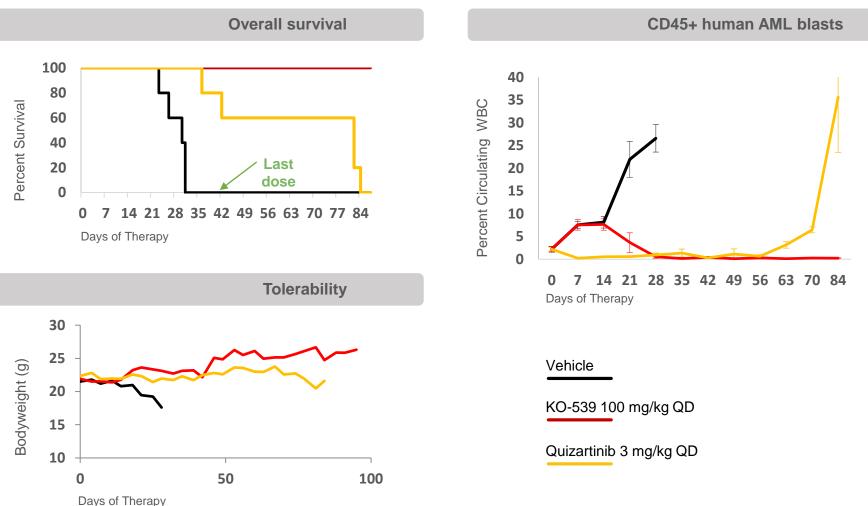
KO-947 Demonstrates Robust Single-Agent Activity in Preclinical Studies


• KO-539 (Menin-MLL Inhibitor)

- *Tipifarnib in HRAS Mutant Solid Tumors*
- Tipifarnib Using CXCL12 Pathway Biomarkers
- KO-947 (ERK Inhibitor)

KO-539: Potent Inhibitor of Menin-MLL Interaction

- Summary
 - Potent, selective small molecule inhibitor of the menin-MLL interaction
 - Robust antitumor activity observed in mixed lineage leukemias rearranged (MLL-r) as well as disseminated NPM1mut and DNMT3Amut AML PDX models
 - Preliminary data suggests anti-leukemic activity by induction of myeloid differentiation in AML blasts
 - Menin-MLL inhibitors have the potential to treat approximately 50% of acute leukemias


- Status
 - IND application cleared in Q1 2019
 - Initiation of Phase 1 study anticipated in Q2 2019

The menin-MLL complex appears to be a central node in epigenetic dysregulation driven by several distinct oncogenic driver mutations important in diverse leukemias and myeloproliferative disorders

KO-539 Produces Lasting Complete Remissions in a NPM1/DNMT3A/IDH2/FLT3-Mutant AML Model

AM7577 Model

Anticipated Milestones & Financial Highlights

Program		Milestones	Status
	HRAS Mutant	Initiation of registration-directed trial in HNSCC	\checkmark
	Indications	Additional data from Phase 2 trial in HNSCC and other SCCs	2H 2019
Tipifarnib	CXCL12 Pathway Indications	Patents for tipifarnib in AITL and CXCL12+ PTCL & AML	\checkmark
Farnesyl Transferase Inhibitor		Proof-of-concept in AITL	\checkmark
		Data from retrospective study in pancreatic cancer	\checkmark
		Additional data from Phase 2 trial in CXCL12+ PTCL	Mid-2019
		Additional data from Phase 2 trial in CMML	2019
KO-947		Potential biomarker of activity in squamous cell carcinomas	\checkmark
ERK Inhibitor		Data from Phase 1 dose-escalation trial	2019
KO-539		FDA clearance of IND application	\checkmark
Menin-MLL Inhibitor		Initiation of Phase 1 trial	Q2 2019

		Nasdaq: KURA
Financial Highlights	Shares outstanding: 38.1M basic, 3.2M options*	
	i ngi ngi to	Cash, cash equivalents and short-term investments: \$179.0M*

Developing Precision Medicines for the Treatment of Cancer